Residential Air-Source Heat Pump Local Government Toolkit

For Municipal Staff

Midwest Air Source Heat Pump Collaborative

This initiative is delivered by Center for Energy and Environment, Slipstream, MEEA, and Elevate.

Overview

- Heat Pump Basics
- Heat Pump Benefits
- <u>Technology Considerations</u>
- <u>Cost Considerations</u>
- Program & Policy Design
- <u>Next Steps & Resources</u>

Heat Pump Basics

What is an Air-Source Heat Pump (ASHP)?

For more detail, see a short video on "what is a heat pump?"

ASHPs are the same technology used in:

Air Conditioners

Air-Source Heat Pump Overview

- Heat pump types
 - Air-source heat pumps (ASHPs) are the most common and the focus of this toolkit
 - Geothermal heat pumps
- ASHP is a broad term used to describe a variety of heat pump types and configurations
 - Cold-climate rated

5

- All-electric vs. hybrid systems
- Ducted, ductless, or hydronic distribution (e.g. boilers)
- Takeaway: heat pump designs are customizable and suitable for a wide variety of applications including singlefamily, multifamily, and manufactured homes

Image source: Green Energy Futures

Heat Pump Benefits

Reduce Carbon Emissions and Utility Bills

- Increase energy efficiency
 - ASHPs are <u>2-4x more efficient</u> than electric resistance or fuel burning heat systems
 - ASHPs are typically 2x more efficient than window AC units
- Reduce utility bills
 - Switching from **electric resistance or propane fuel** for heat can <u>save 30-55% on your heating costs</u>
 - Hybrid heat pumps allow for optimizing economics and respond to fuel price volatility

Enable achieving zero emissions over time

 Electrifying heating systems enables solar or other renewable energy sources to power heating

Image source: <u>RMI</u>

Improve Indoor Air Quality and Safety

Improve indoor air quality and comfort

- ASHPs may offer both <u>air filtration and</u> <u>dehumidification</u>
- ASHPs may improve comfort by through longer run times and efficient operation

Improve safety

- Removes combustion equipment
- In cases where cooling is added, improves health and safety during periods of extreme heat

Technology Considerations

Cold Climate ASHPs (ccASHPs)

- Readily available ccASHPs are on the market, engineered to efficiently heat homes in extremely cold conditions, typically at or below 5°F
- NEEP maintains a <u>list of ccASHPs</u> that meet specific performance criteria
- The Department of Energy's <u>Cold Climate Heat Pump</u> <u>Technology Challenge</u> is accelerating the development and market for cold climate heat pumps.
- In the Midwest, cold-climate heat pumps are recommended for most applications

Image source: Energy News Network

Hybrid ASHPs

- Hybrid heat pumps (also referred to as "dual-fuel" heat pumps) use an electric heat pump and fossil-fuel heating to warm a home
- Offers the resident flexibility to tailor energy usage and operational expenses to their preferences and respond to fuel rate fluctuations
- Watch a <u>short video</u> from Focus on Energy to learn how dual-fuel heat pump systems work
- In the Midwest, hybrid systems will likely be optimal where the existing heating fuel is natural gas

Image source: Family Handyman

Distribution Types

• For ASHP retrofits, the best distribution type for a building is highly dependent on the existing distribution system

Ductless Systems:

Installed where ductwork not feasible

Indoor Wall Unit Ploor Unit Ploor Unit Outdoor Unit

Images source: Massachusetts Clean Energy Center

Short-run Ducted Systems: Installed where large ducting system not feasible

Image source: <u>BetterBuiltNW</u>

Hydronic Systems: Use water to transfer heat to emitters

Applicable Building Types

- Unique design considerations for specific building types
 - Single-family homes
 - Small multifamily (2-4 units)
 - Large multifamily (5+ units)
 - <u>Manufactured homes</u>
- Retrofits and new construction are both feasible

Preparing for Installation: Weatherization

- Weatherization is a commonly recommended first step, especially in the Midwest
 - Weatherization should be done prior to installation of the ASHP, to ensure the ASHP is correctly sized
 - Results in improved comfort and reduced energy bills
- Common weatherization measures include air sealing and adding insulation
- An energy audit can determine necessary weatherization upgrades

Preparing for Installation: Electrical Upgrades

- An upgrade to the electrical service or panel(s) may be required to meet increased electrical needs
- Early on, an electrician should assess the building service size and available space in existing electrical panel(s)
- Panel size requirements will depend on other appliances and loads in the home (typically, between 100 and 200-amp panels are needed)
- The <u>Watt Diet Calculator</u> recommends solutions to reduce or eliminate electrical upgrade requirements.

Image source: Flickr

Cost Considerations

Cost Considerations

- Cost-effectiveness depends on operating costs and upfront costs
- Prioritizing retrofits in low- and moderate-income households (LMI) is critical; increased incentives are often available if a property meets geographic location or income criteria, such as (requirement varies by incentive):
 - <u>Climate and Economic Justice Screen Tool</u> (CEJST)designates census tract that are disadvantaged
 - Below 80% Area Median Income (AMI)
- <u>Research has shown</u> that customers are willing to pay up to 20% more for heat pumps when they deliver utility bill cost savings and improve comfort

Operating Costs

- The impact of ASHPs on utility bills is largely dependent on:
 - Existing heating fuel and fuel rate
 - Climate zone
 - Other retrofits completed in combination with the ASHP (e.g., weatherization, solar)
- Online calculators that estimate utility bill impacts of ASHPs:
 - ComEd (Northern Illinois)
 - RMI (National)
- Maintenance is similar to air conditioner maintenance
 - Centrally Ducted: \$20-150 per year
 - Mini-Split: \$100 per year

Upfront Costs

- Upfront costs of an ASHP is largely dependent on:
 - Size, efficiency, and complexity of the ASHP design
 - Additional upgrades required (e.g., weatherization and electrical needs)
- Average upfront costs
 - Centrally ducted system: \$10,000-\$30,000
 - Ductless system: \$5,000-\$30,000
 - Due to a wide variety of applications the potential cost of a ductless system can vary significantly
 - Rewiring America has a summary of cost estimates for different US regions
- Incentives are available to offset upfront costs
 - Federal incentives through the Inflation Reduction Act (IRA): tax credits, rebates, and financing
 - State incentives
 - Local incentives

Federal Tax Credits and Deductions

Section 25C •

- Applies to owner-occupied and renters
- Covers HVAC and other energy efficiency upgrades (see table) •
- 2025 Standards per CEE RES HVAC Initiative ٠

Section 179D •

- Applies to mid/high-rise multifamily and commercial
- Based on modeled energy reductions ٠

Section 45L •

- Applies to new construction or substantial rehab for single-family, • multifamily, and manufactured homes
- Based on ENERGY STAR® or DOE Zero Energy Ready ۲ certification

Section 25C summary (source: DOE)

EQUIPMENT TYPE	TAX CREDIT AVAILABLE FOR 2023-2032 TAX YEARS	
Home Clean Electricity Products		
Solar (electricity)		
Fuel Cells	20% of cost	
Wind Turbine	30% of cost	
Battery Storage		
Heating, Cooling, and Water Heating		
Heat pumps		
Heat pump water heaters	30% of cost, up to \$2,000 per year	
Biomass stoves		
Geothermal heat pumps	20% of each	
Solar (water heating)	30% of cost	
Efficient air conditioners*	20% of each up to \$600	
Efficient heating equipment*	30% of cost, up to \$600	
Efficient water heating equipment*	30% of cost, up to \$600	
Other Energy Efficiency Upgrades		
Electric panel or circuit upgrades for new electric equipment*	30% of cost, up to \$600	
Insulation materials*	30% of cost	
Windows, including skylights*	30% of cost, up to \$600	
Exterior doors*	30% of cost, up to \$500 for doors (up to \$250 each)	
Home Energy Audits*	30% of cost, up to \$150	
Home Electric Vehicle Charger	30% of cost, up to \$1,000 **	
* Subject to cap of \$1200/year	a map 🖸 of eligible locations	

EST ASHF RATIVE

Federal Rebates

Home Electrification and Appliance Rebates (HEAR)

- State-administered point-of-sale rebates
- Applies to single-family and multifamily
- Rebates based on income criteria

Home Efficiency Rebates (HER)

- State-administered whole-house rebates based on modeled energy savings
- Applies to single-family and multifamily
- Income thresholds not required

HEAR Summary (source: Rewiring America)

Electrification upgrade type	Maximum rebate	
Electric panel	\$4,000	
Electric/induction stove, cooktop, range, or oven	\$840	
Electric wiring	\$2,500	
Heat pump water heater	\$1,750	
Heat pump air conditioner/ heater	\$8,000	
Heat pump clothes dryer	\$840	
Weatherization (insulation, air sealing, and ventilation)	\$1,600	

VEST ASHP

Federal Financing

Greenhouse Gas Reduction Fund

- Provides low-cost loans for building decarbonization
- Financing available through participating lenders
 - Loans at the national scale are available through <u>Climate</u> <u>United</u>, <u>Coalition for Green Capital</u>, and <u>Power Forward</u> <u>Communities</u>
 - Loans will also be available through local lenders like CDFIs, but these are not known yet
- Applies to single-family and multifamily residential buildings, commercial buildings, or community facilities

State Incentives

• State Energy Offices can offer various incentives to assist with energy efficient equipment upgrades and often can provide guidance on federal opportunities as well.

Local Incentives

- Many local utilities across the Midwest offer incentives for ASHPs, weatherization, and electrical upgrades
- <u>DSIRE</u> is a comprehensive database for local incentives and policies

Program & Policy Design

Midwest Policy Trends

+++1=----

KEY TRENDS/TAKEAWAYS

Image source: Midwest ASHP Collaborative

Program & Policy Design

- Local governments in the Midwest can support ASHP adoption through:
 - ASHP programs
 - Workforce development
 - Building codes and standards
 - Internal operations
 - Technical assistance for engineers, builders, general contractors, technicians, etc.
- <u>Rewiring America's Electrification Policy Menu</u> provides local leaders with guidance on policy options to support the adoption of ASHPs, including **local rules**, **financing**, **electrification**, and **local leadership**

Community-Driven Retrofit Programs

- **Building retrofit programs** support building owners and decision-makers in implementing energy efficiency and electrification upgrades in their buildings
- Community-driven building retrofit programs prioritize community desires and needs in the development, delivery, and outcomes of a building retrofit program
 - Co-creation between the local government and community can lead to equitable program outcomes.
 - Local governments can use the <u>Guidelines for Creating Community-Driven Retrofit Programs</u> to navigate the creation of these programs.
- A one-stop shop model can provide a suite of building retrofit services in one location

Program Example: Madison, WI

The Efficiency Navigator

- One-stop-shop building retrofit program
- Focuses on small to medium-sized multifamily affordable housing
- Provides free technical assistance and building energy efficiency upgrades
- When upgrades will reduce overall energy costs and emissions, ASHPs are installed in participating buildings

Efficiency Navigator

Making multi-family housing affordable and resilient

A partnership with Sustain Dane and Elevate

Financial Assistance & Incentive Programs

- Local governments can establish programs to reduce upfront costs and financial barriers to building upgrades. This may include:
 - Rebates
 - Cost share
 - Free building energy upgrades for income-eligible properties
- A program should:
 - Identify a funding source
 - Set requirements for upgrades covered by the program
 - Create programs that stack with other offerings and incentives to maximize savings

Program Example: Chicago, IL

Green Homes Chicago

- Provides up to \$50k in free energy upgrades to low-income homeowners
- Eligible properties include 1–4-unit owneroccupied residential buildings
- Upgrades may include insulation, heat pump HVAC systems, and electric appliances

Building Codes & Appliance Standards

Example considerations:

- Heat pump installation requirement for A/C
 - Requires all air conditioning units be heat pumps

Zero-Pollution standards for local appliance sales

- Requires new equipment to emit little or no pollution during operation
- Electric-ready building codes for new buildings
 - Requires new buildings have electric service and wiring for electric appliances
- All-electric building codes for new buildings and renovations
 - Requires buildings to be equipped with electric space heating, water heating, and electric appliances

Local Government Operations

- Permits and Inspections
 - Develop an application or incorporate ASHPs into existing permit applications
 - Establish internal protocols for consistent enforcement
 - Offer incentives for ASHP permit applications
 - Provide engineers and inspectors with training
- Fire & Safety
 - Building awareness of safety benefits when replacing fossil fuel equipment with ASHPs
- Sustainability
 - Community education and engagement on ASHP basics, benefits, and incentives

Next Steps & Resources

Recommendations & Next Steps

Links to Key Resources

- Midwest ASHP Glossary of Terms 2024
- ASHP Basics
 - <u>Midwest ASHP Collaborative</u>
 - DOE Air-Source Heat Pumps
 - DOE Ductless Mini-Split Heat Pumps
 - ENERGY STAR Air-Source Heat Pumps
 - Rewiring American Upgrade Your Heating and Cooling with a Heat Pump
- Technology
 - ENERGY STAR Product Finder
 - Rewiring America Guide to Heat Pump Quotes
 - Focus on Energy How Dual-Fuel Heat Pumps Work
- Policy Considerations
 - <u>Rewiring America Local Government Electrification Policy Menu</u>
 - Rewiring America Electrification Resources for Local Leaders
 - <u>C40, BEI, Elevate Guidelines for Creating Community-Driven Retrofit Programs</u>
 - Shift Zero Policy Toolkit to pursue zero carbon building stock

Links to Key Resources

- Equipment and Maintenance Costs
 - <u>EIA Buildings Sector Appliance and Equipment Costs</u> (ASHP p.39-44)
- Energy Savings Calculators and Reports
 - <u>CEE Developing Electric Rates for Hybrid ASHPs in the Midwest</u>
 - <u>Efficiency Maine Heating Cost Comparison</u>
 - <u>ComEd Savings Calculator</u>
 - ENERGY STAR Life Cycle Cost Estimate
 - <u>RMI GreenUpgrade Calculator</u>
- Incentives
 - DOE Making Our Homes More Efficient: Clean Energy Tax Credits for Consumers
 - ENERGY STAR Federal Tax Credits and Incentives for Energy Efficiency
 - <u>Midwest ASHP Collaborative State Energy Office Incentives List</u>
 - <u>Rewiring America Electrification Incentives Calculator</u>
 - DSIRE USA Database

Links to Key Resources

- Community & Stakeholder Engagement
 - ECC and PODER Climate Equity & Community Engagement in Building Electrification
- Case Studies & Examples
 - Madison, WI: Efficiency Navigator
 - <u>Chicago, IL: Green Homes Chicago</u>
 - Ann Arbor, MI: Electrification Badging
 - <u>Detroit</u>, MI: Design Build Green Hub
- Tracking Tools
 - <u>RMI Equitable Home Electrification Toolkit Roadmap</u>

This initiative is delivered by Center for Energy and Environment, Slipstream, MEEA, and Elevate.

